Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
iScience ; 27(5): 109647, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38638572

ABSTRACT

Monitoring in vivo viral dynamics can improve our understanding of pathogenicity and tissue tropism. Because the gene size of RNA viruses is typically small, NanoLuc is the primary choice for accommodation within viral genome. However, NanoLuc/Furimazine and also the conventional firefly luciferase/D-luciferin are known to exhibit relatively low tissue permeability and thus less sensitivity for visualization of deep tissue including lungs. Here, we demonstrated in vivo sufficient visualization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using the pair of a codon-optimized Akaluc and AkaLumine. We engineered the codon-optimized Akaluc gene possessing the similar GC ratio of SARS-CoV-2. Using the SARS-CoV-2 recombinants carrying the codon-optimized Akaluc, we visualized in vivo infection of respiratory organs, including the tissue-specific differences associated with particular variants. Additionally, we could evaluate the efficacy of antivirals by monitoring changes in Akaluc signals. Overall, we offer an effective technology for monitoring viral dynamics in live animals.

2.
J Virol Methods ; 326: 114894, 2024 May.
Article in English | MEDLINE | ID: mdl-38360268

ABSTRACT

Many methods have been developed to measure the neutralizing capacity of antibodies to SARS-CoV-2. However, these methods are low throughput and can be difficult to quickly modify in response to emerging variants. Therefore, an experimental system for rapid and easy measurement of the neutralizing capacity of antibodies against various variants is needed. In this study, we developed an experimental system that can efficiently measure the neutralizing capacity of sera by using a GFP-carrying recombinant SARS-CoV-2 with spike proteins of multiple variants (B.1.1, BA.5, or XBB.1.5). For all 3 recombinant chimeric genomes generated, neutralizing antibody titers determined by measuring GFP fluorescence intensity correlated significantly with those calculated from viral RNA levels measured by RT-qPCR in the supernatant of infected cells. Furthermore, neutralizing antibody titers determined by visually assessing GFP fluorescence using microscopy were also significantly correlated with those determined by RT-qPCR. By using this high-throughput method, it is now possible to quickly and easily determine the neutralizing capacity of antibodies against SARS-CoV-2 variants.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , High-Throughput Screening Assays , Antibodies, Neutralizing , Antibodies, Viral
3.
Nat Commun ; 15(1): 1176, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332154

ABSTRACT

Circulation of SARS-CoV-2 Omicron XBB has resulted in the emergence of XBB.1.5, a new Variant of Interest. Our phylogenetic analysis suggests that XBB.1.5 evolved from XBB.1 by acquiring the S486P spike (S) mutation, subsequent to the acquisition of a nonsense mutation in ORF8. Neutralization assays showed similar abilities of immune escape between XBB.1.5 and XBB.1. We determine the structural basis for the interaction between human ACE2 and the S protein of XBB.1.5, showing similar overall structures between the S proteins of XBB.1 and XBB.1.5. We provide the intrinsic pathogenicity of XBB.1 and XBB.1.5 in hamsters. Importantly, we find that the ORF8 nonsense mutation of XBB.1.5 resulted in impairment of MHC suppression. In vivo experiments using recombinant viruses reveal that the XBB.1.5 mutations are involved with reduced virulence of XBB.1.5. Together, our study identifies the two viral functions defined the difference between XBB.1 and XBB.1.5.


Subject(s)
COVID-19 , Animals , Cricetinae , Humans , Codon, Nonsense , Phylogeny , SARS-CoV-2/genetics , Biological Assay
4.
J Virol ; 98(3): e0163823, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38353536

ABSTRACT

Reverse genetics systems have played a central role in developing recombinant viruses for a wide spectrum of virus research. The circular polymerase extension reaction (CPER) method has been applied to studying positive-strand RNA viruses, allowing researchers to bypass molecular cloning of viral cDNA clones and thus leading to the rapid generation of recombinant viruses. However, thus far, the CPER protocol has only been established using cap-dependent RNA viruses. Here, we demonstrate that a modified version of the CPER method can be successfully applied to positive-strand RNA viruses that use cap-independent, internal ribosomal entry site (IRES)-mediated translation. As a proof-of-concept, we employed mammalian viruses with different types (classes I, II, and III) of IRES to optimize the CPER method. Using the hepatitis C virus (HCV, class III), we found that inclusion in the CPER assembly of an RNA polymerase I promoter and terminator, instead of those from polymerase II, allowed greater viral production. This approach was also successful in generating recombinant bovine viral diarrhea virus (class III) following transfection of MDBK/293T co-cultures to overcome low transfection efficiency. In addition, we successfully generated the recombinant viruses from clinical specimens. Our modified CPER could be used for producing hepatitis A virus (HAV, type I) as well as de novo generation of encephalomyocarditis virus (type II). Finally, we generated recombinant HCV and HAV reporter viruses that exhibited replication comparable to that of the wild-type parental viruses. The recombinant HAV reporter virus helped evaluate antivirals. Taking the findings together, this study offers methodological advances in virology. IMPORTANCE: The lack of versatility of reverse genetics systems remains a bottleneck in viral research. Especially when (re-)emerging viruses reach pandemic levels, rapid characterization and establishment of effective countermeasures using recombinant viruses are beneficial in disease control. Indeed, numerous studies have attempted to establish and improve the methods. The circular polymerase extension reaction (CPER) method has overcome major obstacles in generating recombinant viruses. However, this method has not yet been examined for positive-strand RNA viruses that use cap-independent, internal ribosome entry site-mediated translation. Here, we engineered a suitable gene cassette to expand the CPER method for all positive-strand RNA viruses. Furthermore, we overcame the difficulty of generating recombinant viruses because of low transfection efficiency. Using this modified method, we also successfully generated reporter viruses and recombinant viruses from a field sample without virus isolation. Taking these findings together, our adapted methodology is an innovative technology that could help advance virologic research.


Subject(s)
Hepatitis C , Protein Biosynthesis , Reverse Genetics , Animals , Hepatitis C/metabolism , Internal Ribosome Entry Sites/genetics , Mammals/genetics , Positive-Strand RNA Viruses/genetics , Positive-Strand RNA Viruses/metabolism , Reverse Genetics/methods , RNA, Viral/genetics
5.
Cell Host Microbe ; 32(2): 170-180.e12, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38280382

ABSTRACT

In late 2023, several SARS-CoV-2 XBB descendants, notably EG.5.1, were predominant worldwide. However, a distinct SARS-CoV-2 lineage, the BA.2.86 variant, also emerged. BA.2.86 is phylogenetically distinct from other Omicron sublineages, accumulating over 30 amino acid mutations in its spike protein. Here, we examined the virological characteristics of the BA.2.86 variant. Our epidemic dynamics modeling suggested that the relative reproduction number of BA.2.86 is significantly higher than that of EG.5.1. Additionally, four clinically available antivirals were effective against BA.2.86. Although the fusogenicity of BA.2.86 spike is similar to that of the parental BA.2 spike, the intrinsic pathogenicity of BA.2.86 in hamsters was significantly lower than that of BA.2. Since the growth kinetics of BA.2.86 are significantly lower than those of BA.2 both in vitro and in vivo, the attenuated pathogenicity of BA.2.86 is likely due to its decreased replication capacity. These findings uncover the features of BA.2.86, providing insights for control and treatment.


Subject(s)
COVID-19 , Animals , Cricetinae , SARS-CoV-2/genetics , Amino Acids , Kinetics , Mutation
6.
Structure ; 32(3): 263-272.e7, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38228146

ABSTRACT

SARS-CoV-2 rapidly mutates and acquires resistance to neutralizing antibodies. We report an in-silico-designed antibody that restores the neutralizing activity of a neutralizing antibody. Our previously generated antibody, UT28K, exhibited broad neutralizing activity against mutant variants; however, its efficacy against Omicron BA.1 was compromised by the mutation. Using previously determined structural information, we designed a modified-UT28K (VH T28R/N57D), UT28K-RD targeting the mutation site. In vitro and in vivo experiments demonstrated the efficacy of UT28K-RD in neutralizing Omicron BA.1. Although the experimentally determined structure partially differed from the predicted model, our study serves as a successful case of antibody design, wherein the predicted amino acid substitution enhanced the recognition of the previously elusive Omicron BA.1. We anticipate that numerous similar cases will be reported, showcasing the potential of this approach for improving protein-protein interactions. Our findings will contribute to the development of novel therapeutic strategies for highly mutable viruses, such as SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Antibodies, Viral , Antibodies, Neutralizing , Mutation , Antibodies, Monoclonal
7.
Lab Chip ; 23(22): 4909-4918, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37877206

ABSTRACT

A digital platform that can rapidly and accurately diagnose pathogenic viral variants, including SARS-CoV-2, will minimize pandemics, public anxiety, and economic losses. We recently reported an artificial intelligence (AI)-nanopore platform that enables testing for Wuhan SARS-CoV-2 with high sensitivity and specificity within five minutes. However, which parts of the virus are recognized by the platform are unknown. Similarly, whether the platform can detect SARS-CoV-2 variants or the presence of the virus in clinical samples needs further study. Here, we demonstrated the platform can distinguish SARS-CoV-2 variants. Further, it identified mutated Wuhan SARS-CoV-2 expressing spike proteins of the delta and omicron variants, indicating it discriminates spike proteins. Finally, we used the platform to identify omicron variants with a sensitivity and specificity of 100% and 94%, respectively, in saliva specimens from COVID-19 patients. Thus, our results demonstrate the AI-nanopore platform is an effective diagnostic tool for SARS-CoV-2 variants.


Subject(s)
COVID-19 , Nanopores , Humans , Artificial Intelligence , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
8.
J Virol ; 97(10): e0101123, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37796123

ABSTRACT

IMPORTANCE: Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.


Subject(s)
Genome, Viral , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Genome, Viral/genetics
9.
Cell Rep Med ; 4(8): 101134, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37586325

ABSTRACT

VLPCOV-01 is a lipid nanoparticle-encapsulated self-amplifying RNA (saRNA) vaccine that expresses a membrane-anchored receptor-binding domain (RBD) derived from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. A phase 1 study of VLPCOV-01 is conducted (jRCT2051210164). Participants who completed two doses of the BNT162b2 mRNA vaccine previously are randomized to receive one intramuscular vaccination of 0.3, 1.0, or 3.0 µg VLPCOV-01, 30 µg BNT162b2, or placebo. No serious adverse events have been reported. VLPCOV-01 induces robust immunoglobulin G (IgG) titers against the RBD protein that are maintained up to 26 weeks in non-elderly participants, with geometric means ranging from 5,037 (95% confidence interval [CI] 1,272-19,940) at 0.3 µg to 12,873 (95% CI 937-17,686) at 3 µg compared with 3,166 (95% CI 1,619-6,191) with 30 µg BNT162b2. Neutralizing antibody titers against all variants of SARS-CoV-2 tested are induced. VLPCOV-01 is immunogenic following low-dose administration. These findings support the potential for saRNA as a vaccine platform.


Subject(s)
COVID-19 , Vaccines , Humans , Middle Aged , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , SARS-CoV-2/genetics , RNA , COVID-19/prevention & control , mRNA Vaccines
10.
Commun Biol ; 6(1): 772, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488344

ABSTRACT

The unremitting emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants necessitates ongoing control measures. Given its rapid spread, the new Omicron subvariant BA.5 requires urgent characterization. Here, we comprehensively analyzed BA.5 with the other Omicron variants BA.1, BA.2, and ancestral B.1.1. Although in vitro growth kinetics of BA.5 was comparable among the Omicron subvariants, BA.5 was much more fusogenic than BA.1 and BA.2. Airway-on-a-chip analysis showed that, among Omicron subvariants, BA.5 had enhanced ability to disrupt the respiratory epithelial and endothelial barriers. Furthermore, in our hamster model, in vivo pathogenicity of BA.5 was slightly higher than that of the other Omicron variants and less than that of ancestral B.1.1. Notably, BA.5 gains efficient virus spread compared with BA.1 and BA.2, leading to prompt immune responses. Our findings suggest that BA.5 has low pathogenicity compared with the ancestral strain but enhanced virus spread /inflammation compared with earlier Omicron subvariants.


Subject(s)
COVID-19 , Animals , Cricetinae , SARS-CoV-2 , Virulence , Inflammation
11.
Front Cell Infect Microbiol ; 13: 1197349, 2023.
Article in English | MEDLINE | ID: mdl-37260700

ABSTRACT

Introduction: We examined the neutralizing antibody production efficiency of the second and third severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine doses (2nd- and 3rd-dose) and neutralizing activity on mutant strains, including, the Ancestral, Beta and Omicron strains using green fluorescent protein-carrying recombinant SARS-CoV-2, in living-donor liver transplantation (LDLT) recipients. Methods: The patients who were administered vaccines other than Pfizer- BioNTechBNT162b2 and who had coronavirus disease 2019 in this study period were excluded. We enrolled 154 LDLT recipients and 50 healthy controls. Result: The median time were 21 days (between 1st and 2nd vaccination) and 244 days (between 2nd and 3rd vaccination). The median neutralizing antibody titer after 2nd-dose was lower in LDLT recipients than in controls (0.46 vs 1.00, P<0.0001). All controls had SARS-CoV-2 neutralizing antibodies, whereas 39 LDLT recipients (25.3%) had no neutralizing antibodies after 2nd-dose; age at vaccination, presence of ascites, multiple immunosuppressive treatments, and mycophenolate mofetil treatment were significant risk factors for nonresponder. The neutralizing activities of recipient sera were approximately 3-fold and 5-fold lower than those of control sera against the Ancestral and Beta strains, respectively. The median antibody titer after 3rd-dose was not significantly different between recipients and controls (1.02 vs 1.22, p=0.0758); only 5% recipients was non-responder. The neutralizing activity after third dose to Omicron strains were enhanced and had no significant difference between two groups. Conclusion: Only the 2nd-dose was not sufficiently effective in recipients; however, 3rd-dose had sufficient neutralizing activity against the mutant strain and was as effective as that in healthy controls.


Subject(s)
COVID-19 , Liver Transplantation , Humans , SARS-CoV-2/genetics , BNT162 Vaccine , COVID-19/prevention & control , Living Donors , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
12.
Nat Commun ; 14(1): 2671, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169744

ABSTRACT

In late 2022, various Omicron subvariants emerged and cocirculated worldwide. These variants convergently acquired amino acid substitutions at critical residues in the spike protein, including residues R346, K444, L452, N460, and F486. Here, we characterize the convergent evolution of Omicron subvariants and the properties of one recent lineage of concern, BQ.1.1. Our phylogenetic analysis suggests that these five substitutions are recurrently acquired, particularly in younger Omicron lineages. Epidemic dynamics modelling suggests that the five substitutions increase viral fitness, and a large proportion of the fitness variation within Omicron lineages can be explained by these substitutions. Compared to BA.5, BQ.1.1 evades breakthrough BA.2 and BA.5 infection sera more efficiently, as demonstrated by neutralization assays. The pathogenicity of BQ.1.1 in hamsters is lower than that of BA.5. Our multiscale investigations illuminate the evolutionary rules governing the convergent evolution for known Omicron lineages as of 2022.


Subject(s)
COVID-19 , Animals , Cricetinae , Phylogeny , SARS-CoV-2/genetics , Amino Acid Substitution , Biological Assay , Antibodies, Neutralizing , Antibodies, Viral
13.
Nat Commun ; 14(1): 2800, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193706

ABSTRACT

In late 2022, SARS-CoV-2 Omicron subvariants have become highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged through the recombination of two cocirculating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022. XBB.1 is the variant most profoundly resistant to BA.2/5 breakthrough infection sera to date and is more fusogenic than BA.2.75. The recombination breakpoint is located in the receptor-binding domain of spike, and each region of the recombinant spike confers immune evasion and increases fusogenicity. We further provide the structural basis for the interaction between XBB.1 spike and human ACE2. Finally, the intrinsic pathogenicity of XBB.1 in male hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provides evidence suggesting that XBB is the first observed SARS-CoV-2 variant to increase its fitness through recombination rather than substitutions.


Subject(s)
COVID-19 , Animals , Cricetinae , Humans , Male , Phylogeny , SARS-CoV-2/genetics , Recombination, Genetic , Spike Glycoprotein, Coronavirus/genetics
14.
iScience ; 26(5): 106652, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37182096

ABSTRACT

The small GTPase Rab8 plays a vital role in the vesicular trafficking of cargo proteins from the trans-Golgi network to target membranes. Upon reaching its target destination, Rab8 is released from the vesicular membrane into the cytoplasm via guanosine triphosphate (GTP) hydrolysis. The fate of GDP-bound Rab8 released from the destination membranes, however, has not been investigated adequately. In this study, we found that GDP-bound Rab8 subfamily proteins are targeted for immediate degradation, and the pre-emptive quality control machinery is responsible for eliminating these proteins in a nucleotide-specific manner. We provide evidence that components of this quality control machinery have a critical role in vesicular trafficking events, including the formation of primary cilia, a process regulated by the Rab8 subfamily. These results suggest that the protein degradation machinery plays a critical role in the integrity of membrane trafficking by limiting the excessive accumulation of GDP-bound Rab8 subfamily proteins.

15.
Nat Commun ; 14(1): 2810, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208330

ABSTRACT

Several vaccines have been widely used to counteract the global pandemic caused by SARS-CoV-2. However, due to the rapid emergence of SARS-CoV-2 variants of concern (VOCs), further development of vaccines that confer broad and longer-lasting protection against emerging VOCs are needed. Here, we report the immunological characteristics of a self-amplifying RNA (saRNA) vaccine expressing the SARS-CoV-2 Spike (S) receptor binding domain (RBD), which is membrane-anchored by fusing with an N-terminal signal sequence and a C-terminal transmembrane domain (RBD-TM). Immunization with saRNA RBD-TM delivered in lipid nanoparticles (LNP) efficiently induces T-cell and B-cell responses in non-human primates (NHPs). In addition, immunized hamsters and NHPs are protected against SARS-CoV-2 challenge. Importantly, RBD-specific antibodies against VOCs are maintained for at least 12 months in NHPs. These findings suggest that this saRNA platform expressing RBD-TM will be a useful vaccine candidate inducing durable immunity against emerging SARS-CoV-2 strains.


Subject(s)
COVID-19 , Vaccines , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , RNA Recognition Motif , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Antibodies, Viral
16.
PLoS Pathog ; 19(3): e1011231, 2023 03.
Article in English | MEDLINE | ID: mdl-36972312

ABSTRACT

Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn't gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , RNA, Viral , COVID-19 Drug Treatment , Antiviral Agents/metabolism , Binding Sites
17.
Viruses ; 15(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36851666

ABSTRACT

Echinocandin antifungal drugs, including micafungin, anidulafungin, and caspofungin, have been recently reported to exhibit antiviral effects against various viruses such as flavivirus, alphavirus, and coronavirus. In this study, we focused on micafungin and its derivatives and analyzed their antiviral activities against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The micafungin derivatives Mi-2 and Mi-5 showed higher antiviral activity than micafungin, with 50% maximal inhibitory concentration (IC50) of 5.25 and 6.51 µM, respectively (3.8 to 4.7-fold stronger than micafungin) and 50% cytotoxic concentration (CC50) of >64 µM in VeroE6/TMPRSS2 cells. This high anti-SARS-CoV-2 activity was also conserved in human lung epithelial cell-derived Calu-3 cells. Micafungin, Mi-2, and Mi-5 were suggested to inhibit the intracellular virus replication process; additionally, these compounds were active against SARS-CoV-2 variants, including Delta (AY.122, hCoV-19/Japan/TY11-927/2021), Omicron (BA.1.18, hCoV-19/Japan/TY38-873/2021), a variant resistant to remdesivir (R10/E796G C799F), and a variant resistant to casirivimab/imdevimab antibody cocktail (E406W); thus, our results provide basic evidence for the potential use of micafungin derivatives for developing antiviral agents.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , Micafungin/pharmacology , RNA Replication , RNA, Viral , SARS-CoV-2
18.
Microbiol Immunol ; 67(1): 22-31, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36258658

ABSTRACT

Smoking is one of the risk factors most closely related to the severity of coronavirus disease 2019 (COVID-19). However, the relationship between smoking history and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is unknown. In this study, we evaluated the ACE2 expression level in the lungs of current smokers, ex-smokers, and nonsmokers. The ACE2 expression level of ex-smokers who smoked cigarettes until recently (cessation period shorter than 6 months) was higher than that of nonsmokers and ex-smokers with a long history of nonsmoking (cessation period longer than 6 months). We also showed that the efficiency of SARS-CoV-2 infection was enhanced in a manner dependent on the angiotensin-converting enzyme 2 (ACE2) expression level. Using RNA-seq analysis on the lungs of smokers, we identified that the expression of inflammatory signaling genes was correlated with ACE2 expression. Notably, with increasing duration of smoking cessation among ex-smokers, not only ACE2 expression level but also the expression levels of inflammatory signaling genes decreased. These results indicated that smoking enhances the expression levels of ACE2 and inflammatory signaling genes. Our data suggest that the efficiency of SARS-CoV-2 infection is enhanced by smoking-mediated upregulation of ACE2 expression level.


Subject(s)
COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/metabolism , Smoking/adverse effects
19.
Cell ; 185(21): 3992-4007.e16, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36198317

ABSTRACT

After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Antibodies, Viral , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
20.
Cell Host Microbe ; 30(11): 1540-1555.e15, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36272413

ABSTRACT

The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency, but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...